Generalization Error Bounds with Probabilistic Guarantee for SGD in Nonconvex Optimization
نویسندگان
چکیده
The success of deep learning has led to a rising interest in the generalization property of the stochastic gradient descent (SGD) method, and stability is one popular approach to study it. Existing works based on stability have studied nonconvex loss functions, but only considered the generalization error of the SGD in expectation. In this paper, we establish various generalization error bounds with probabilistic guarantee for the SGD. Specifically, for both general nonconvex loss functions and gradient dominant loss functions, we characterize the on-average stability of the iterates generated by SGD in terms of the on-average variance of the stochastic gradients. Such characterization leads to improved bounds for the generalization error for SGD. We then study the regularized risk minimization problem with strongly convex regularizers, and obtain improved generalization error bounds for proximal SGD. With strongly convex regularizers, we further establish the generalization error bounds for nonconvex loss functions under proximal SGD with high-probability guarantee, i.e., exponential concentration in probability.
منابع مشابه
Stability and Generalization of Learning Algorithms that Converge to Global Optima
We establish novel generalization bounds for learning algorithms that converge to global minima. We do so by deriving black-box stability results that only depend on the convergence of a learning algorithm and the geometry around the minimizers of the loss function. The results are shown for nonconvex loss functions satisfying the Polyak-Łojasiewicz (PL) and the quadratic growth (QG) conditions...
متن کاملData-Dependent Stability of Stochastic Gradient Descent
We establish a data-dependent notion of algorithmic stability for Stochastic Gradient Descent (SGD) and employ it to develop novel generalization bounds. This is in contrast to previous distribution-free algorithmic stability results for SGD which depend on the worstcase constants. By virtue of the data-dependent argument, our bounds provide new insights into learning with SGD on convex and non...
متن کاملLinear Convergence of Accelerated Stochastic Gradient Descent for Nonconvex Nonsmooth Optimization
In this paper, we study the stochastic gradient descent (SGD) method for the nonconvex nonsmooth optimization, and propose an accelerated SGD method by combining the variance reduction technique with Nesterov’s extrapolation technique. Moreover, based on the local error bound condition, we establish the linear convergence of our method to obtain a stationary point of the nonconvex optimization....
متن کاملLinear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملEntropy-SGD: Biasing Gradient Descent Into Wide Valleys
This paper proposes a new optimization algorithm called Entropy-SGD for training deep neural networks that is motivated by the local geometry of the energy landscape. Local extrema with low generalization error have a large proportion of almost-zero eigenvalues in the Hessian with very few positive or negative eigenvalues. We leverage upon this observation to construct a local-entropy-based obj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.06903 شماره
صفحات -
تاریخ انتشار 2018